Part Number Hot Search : 
R31681 K3502 MC9S08 MC20A 4415E C78L05CD DTC14 KE180
Product Description
Full Text Search
 

To Download AP6901AGSM-HF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  advanced power dual n-channel mosfet with electronics corp. schottky diode simple drive requirement ch-1 bv dss 30v dc-dc converter suitable r ds(on) 16.5m fast switching performance i d 7.4a rohs compliant & halogen-free ch-2 bv dss 30v r ds(on) 16m description i d 9.3a absolute maximum ratings symbol rating units channel-2 v ds drain-source voltage 30 v v gs gate-source voltage + 20 v i d @t a =25 continuous drain current 3 9.3 a i d @t a =70 continuous drain current 3 7.5 a i dm pulsed drain current 1 30 a p d @t a =25 total power dissipation 2.2 w t stg storage temperature range -55 to 150 t j operating junction temperature range -55 to 150 symbol units max. rthj-a (ch-1) thermal resistance junction-ambient 3 90 /w rthj-a (ch-2) thermal resistance junction-ambient 3 55 /w data and specifications subject to change without notice 1.4 1 42 value 201202291 thermal data typ. 70 parameter parameter 7.4 5.9 30 + 20 30 a p6901agsm-hf channel-1 halogen-free product a dvanced power mosfets from apec provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. the so-8 package is widely preferred for all commercial-industrial surface mount applications and suited for low voltage applications such as dc/dc converters. d1 d1 g2 s2/a g1 s1/d2 s1/d2 s1/d2 so-8 g1 d1 s1/d2 g2 n -channel 1 mosfet s2/a n -channel 2 mosfet schottky diode
ch-1 electrical characteristics@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units bv dss drain-source breakdown voltage v gs =0v, i d =250ua 30 - - v r ds(on) static drain-source on-resistance 2 v gs =10v, i d =7a - 12 16.5 m ? v gs =4.5v, i d =5a - 18 26 m ? v gs(th) gate threshold voltage v ds =v gs , i d =250ua 1 1.65 3 v g fs forward transconductance v ds =10v, i d =5a - 15 - s i dss drain-source leakage current v ds =24v, v gs =0v - - 10 ua i gss gate-source leakage v gs =+ 20v, v ds =0v - - + 100 na q g total gate charge i d =5a - 9.5 15.2 nc q gs gate-source charge v ds =15v - 3 - nc q gd gate-drain ("miller") charge v gs =4.5v - 4 - nc t d(on) turn-on delay time v ds =15v - 10 - ns t r rise time i d =1a - 6 - ns t d(off) turn-off delay time r g =3.3 -22- ns t f fall time v gs =10v - 4 - ns c iss input capacitance v gs =0v - 1140 1820 pf c oss output capacitance v ds =15v - 120 - pf c rss reverse transfer capacitance f=1.0mhz - 95 - pf r g gate resistance f=1.0mhz - 1.3 2.6 source-drain diode symbol parameter test conditions min. typ. max. units v sd forward on voltage 2 i s =1.2a, v gs =0v - - 1.2 v t rr reverse recovery time i s =5a, v gs =0v - 18 - ns q rr reverse recovery charge di/dt=100a/s - 10 - nc 2 AP6901AGSM-HF
a p6901agsm-hf ch-2 electrical characteristics@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units bv dss drain-source breakdown voltage v gs =0v, i d =250ua 30 - - v r ds(on) static drain-source on-resistance 2 v gs =10v, i d =9a - 12 16 m ? v gs =4.5v, i d =6a - 18 26 m ? v gs(th) gate threshold voltage v ds =v gs , i d =250ua 1 1.65 3 v g fs forward transconductance v ds =10v, i d =6a - 16 - s i dss drain-source leakage current v ds =24v, v gs =0v - - 100 ua i gss gate-source leakage v gs =+ 20v, v ds =0v - - + 100 na q g total gate charge i d =6a - 9.5 15.2 nc q gs gate-source charge v ds =15v - 3 - nc q gd gate-drain ("miller") charge v gs =4.5v - 4 - nc t d(on) turn-on delay time v ds =15v - 9 - ns t r rise time i d =1a - 5 - ns t d(off) turn-off delay time r g =3.3 -22- ns t f fall time v gs =10v - 5 - ns c iss input capacitance v gs =0v - 1180 1888 pf c oss output capacitance v ds =15v - 165 - pf c rss reverse transfer capacitance f=1.0mhz - 105 - pf r g gate resistance f=1.0mhz - 1.3 2.6 source-drain diode symbol parameter test conditions min. typ. max. units v sd forward on voltage 2 i s =1.8a, v gs =0v - - 1.2 v t rr reverse recovery time is=6a, v gs =0 v , - 17 - ns q rr reverse recovery charge di/dt=100a/s - 8 - nc notes: 1.pulse width limited by max. junction temperature. 2.pulse test 3.surface mounted on 1 in 2 copper pad of fr4 board, t < 10 sec. this product is sensitive to electrostatic discharge, please handle with caution. use of this product as a critical component in life support or other similar systems is not authorized. apec does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. apec reserves the right to make changes without further notice to any products herein to improve reliability, function or design. 3
a p6901agsm-h f schottky specifications@t j =25 o c(unless otherwise specified) symbol parameter test conditions min. typ. max. units v f forward voltage drop i f =1.0a - 0.47 0.5 v i rm maximum reverse leakage current v r =24v - 0.004 0.2 ma maximum reverse leakage current v r =24v,t j =75 - 0.5 1 ma 4
ap6901agsm-h f channel-1 fig 1. typical output characteristics fig 2. typical output characteristics fig 3. on-resistance v.s. gate voltage fig 4. normalized on-resistance v.s. junction temperature fig 5. forward characteristic of fig 6. gate threshold voltage v.s. reverse diode junction temperature 5 0 10 20 30 40 012345 v ds , drain-to-source voltage (v) i d , drain current (a) t a =25 o c 10v 7.0v 6.0v 5.0v v g = 4.0 v 0 10 20 30 40 012345 v ds , drain-to-source voltage (v) i d , drain current (a) t a =150 o c 10v 7.0v 6.0v 5.0v v g = 4.0v 10 12 14 16 18 20 22 246810 v gs , gate-to-source voltage (v) r ds(on) (m ) i d =5a t a =25 o c 0.4 0.8 1.2 1.6 2.0 -50 0 50 100 150 t j , junction temperature ( o c) normalized r ds(on) i d =7a v g =10v 0 2 4 6 8 0 0.2 0.4 0.6 0.8 1 1.2 v sd , source-to-drain voltage (v) i s (a) t j =25 o c t j =150 o c 0.0 0.4 0.8 1.2 1.6 2.0 -50 0 50 100 150 t j ,junction temperature ( o c) normalized v gs(th) i d =250ua
a p6901agsm-h f channel-1 fig 7. gate charge characteristics fig 8. typical capacitance characteristics fig 9. maximum safe operating area fig 10. effective transient thermal impedance fig 11. switching time waveform fig 12. maximum continuous drain current v.s. ambient temperature 6 0 2 4 6 8 10 0 4 8 12 16 20 q g , total gate charge (nc) v gs , gate to source voltage (v) i d =5a v ds =15v 0 400 800 1200 1600 1 5 9 1317212529 v ds , drain-to-source voltage (v) c (pf) f =1.0mh z c iss c oss c rss 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 t , pulse width (s) normalized thermal response (r thja ) p dm duty factor = t/t peak t j = p dm x r thja + t a r thja =135 /w t t 0.02 0.01 0.05 0.1 0.2 duty factor=0.5 single pulse 0.01 0.1 1 10 100 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) i d (a) t a =25 o c single pulse 100us 1ms 10ms 100ms 1s dc operation in this area limited by r ds(on) 0 10 20 30 40 0123456 v gs , gate-to-source voltage (v) i d , drain current (a) t j =150 o c t j =25 o c v ds =5v 0 2 4 6 8 10 25 50 75 100 125 150 t a , ambient temperature ( o c ) i d , drain current (a) t j = -40 o c
ap6901agsm-h f channel-2 fig 1. typical output characteristics fig 2. typical output characteristics fig 3. on-resistance v.s. gate voltage fig 4. normalized on-resistance v.s. junction temperature fig 5. forward characteristic of fig 6. gate threshold voltage v.s. reverse diode junction temperature 7 0 10 20 30 40 012345 v ds , drain-to-source voltage (v) i d , drain current (a) t a =150 o c 10v 7.0v 6.0v 5.0v v g =4.0v 8 12 16 20 24 246810 v gs ,gate-to-source voltage (v) r ds(on) (m ) i d =6a t a =25 o c 0.4 0.8 1.2 1.6 2.0 -50 0 50 100 150 t j , junction temperature ( o c) normalized r ds(on) i d =9a v g =10v 0.0 0.4 0.8 1.2 1.6 2.0 -50 0 50 100 150 t j , junction temperature ( o c) normalized v gs(th) 0 2 4 6 8 10 0 0.4 0.8 1.2 v sd , source-to-drain voltage (v) i s (a) t j =25 o c t j =150 o c 0 10 20 30 40 0123 v ds , drain-to-source voltage (v) i d , drain current (a) t a =25 o c 10v 7.0v 6.0v 5.0v v g =4.0v i d =10ma
a p6901agsm-h f channel-2 fig 7. gate charge characteristics fig 8. typical capacitance characteristics fig 9. maximum safe operating area fig 10. effective transient thermal impedance fig 11. transfer characteristics fig 12. maximum continuous drain current v.s. ambient temperature 8 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1 10 100 1000 t , pulse width (s) normalized thermal response (r thja ) p dm duty factor = t/t peak t j = p dm x r thja + t a r thja =135 /w t t 0.02 0.01 0.05 0.1 0.2 duty factore=0.5 single pulse 0 2 4 6 8 10 0 4 8 12 16 20 q g , total gate charge (nc) v gs , gate to source voltage (v) i d =6a v ds =15v 0 400 800 1200 1600 1 5 9 1317212529 v ds , drain-to-source voltage (v) c (pf) f =1.0mhz c iss c oss c rss 0.01 0.1 1 10 100 0.01 0.1 1 10 100 v ds , drain-to-source voltage (v) i d (a) t a =25 o c single pulse 100us 1ms 10ms 100ms 1s dc operation in this area limited by r ds(on) 0 10 20 30 40 0123456 v gs , gate-to-source voltage (v) i d , drain current (a) t j =150 o c t j =25 o c v ds =5v 0 2 4 6 8 10 25 50 75 100 125 150 t a , ambient temperature ( o c ) i d , drain current (a)
a p6901agsm-h f schottky fig 1. reverse current vs junction temperature fig 2. typical forward characteristics 9 0.0001 0.001 0.01 0.1 1 10 0 25 50 75 100 125 t j , junction temperature ( o c) i r , reverse current (ma) 30v 24v 1 10 0 0.3 0.6 0.9 1.2 1.5 v f , forward voltage drop (v) i f , forward current (a) t j =25 o c t j =150 o c


▲Up To Search▲   

 
Price & Availability of AP6901AGSM-HF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X